J. of Ramanujan Society of Math. and Math. Sc. Vol.5, No.1 (2016), pp. 21-32

# PROPERTY-LOADED VERTEX COLORINGS OF A HYPERGRAPH

## Germina K. Augusthy

Department of Mathematics, University of Botswana, Gaborone. E-mail: srgerminaka@gmail.com

## Dedicated to Prof. M.A. Pathan on his 75<sup>th</sup> birth anniversary

Abstract: Given a hypergraph  $H = (X, \mathcal{E})$ , an integer  $k \geq 1$  and a property  $\mathcal{P}$ , of subsets of X, a  $(\mathcal{P}, k)$ -coloring of H is a function  $\pi : X \to \{1, 2, \ldots, k\} =: k$  such that for all  $i \in k$  the induced subhypergraph  $\langle \pi^{-1}(i) \rangle_H \in \overline{\mathcal{P}}$ , where  $\overline{\mathcal{P}}$  denotes the set of all subsets of X that do not possess the property  $\mathcal{P}$ . The hypergraph H is  $(\mathcal{P}, k)$ -colorable if and only if it has a  $(\mathcal{P}, k)$ -coloring. The  $\mathcal{P}$ -chromatic number  $\chi_{\mathcal{P}}(H)$  of H is then defined as the least k such that H has a  $(\mathcal{P}, k)$ -coloring. In this note, we initiate a study of  $\chi_{\mathcal{P}}(H)$  for hereditary properties  $\mathcal{P}$ . For non-hereditary properties, the study appears challenging.

**Keywords:** hypergraph, coloring, domination, stability, hereditary property, suprahereditary property,  $\mathcal{P}$ -chromatic, enclaveless set.

### AMS Subject Classification: 80 05 C

#### 1. Introduction

For all terminology and notation in the theories of graphs and hypergraphs we refer the reader to Harary [5] and Berge [4], respectively. The hypergraphs considered here are more general in that, unlike in [4], they may have *isolates*, that is, the set Y of vertices that are not contained any edge of the hypergraph; this fundamental difference was first noticed and hypergraphs were treated accordingly in [1].

Hypergraphs are a natural generalization of undirected graphs in which edges may consist of more than 2 vertices. More precisely, a (finite) hypergraph H = (V, E) is a pair  $\{X, H\}$  where  $H = \{E_1, E_2, \ldots, E_q\}$  is a set of subsets of X such that  $E_i \neq \emptyset$  for all *i*, and  $\bigcup_{i=1}^q E_i = X$ , consisting of *p* vertices and *q* edges; if p = 0then *H* is called the *null hypergraph* and is denoted by  $K_0$ . The elements of *V* are called vertices and the elements of *E* are called hyper- edges, or simply edges of